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ANALYTIC OPTIMIZATIONS IN CRISIS STABILITY

by

Gregory H. Canavan

ABSTRACT

Second strikes are dominated by
submarine launched missiles in the absence of
defenses, but shift to aircraft at modest
levels of defense. Defenses protect some
retaliatory missiles, but not enough to
retaliate strongly. With defenses, missiles
should be vestigial and could be eliminated
without penalty. Then aircraft could also be
significantly reduced without impacting
stability. The combination of parameters
that maximizes cost effectiveness also
maximizes midcourse effectiveness and crisis
stability.

I. INTRODUCTION

Crisis stability models must include a large number of
seemingly complicated interactions, which can make it hard to
understand the sources of important results.l This note gives a
simple, approximate version thought to contain most of the
features needed to understand the behavior of stability indices

and their optimization by proper mixtures of defenses.



II. ELEMENTS
The main elements of crisis stability models are inter-

continental and submarine-launched ballistic missiles (ICBMs and
SLBMs) and bombers, cruise missiles, and carriers--or aircraft
for short. The number of reentry vehicles (RVs) that penetrate
given boost-phase space-based interceptor (SBI) defenses can be
evaluated exactly, but the results are awkward to manipulate.2 A
simple analytic function approximating the number of ICBM reentry
vehicles (RVs) penetrating a constellation of K SBIs is3

R ~ mM-e TK/M, (1)
where m ® 10 is the number of RVs per missile and M = 270 is the
total number of Soviet heavy missiles. About half of them are
fixed and half mobile, but given their long burn times, it is not
necessary to distinguish between them for START near-term force
levels and basings. The fraction of the SBIs within range of
launch is f. It is about 20% for current basing, but would drop
to about 13% for fixed heavy missiles and 10% for mobile heavy
missiles if under START, all were located in the current heavy
missile launch area.?

Fast mobile singlets such as SS-25s have f = 2-3%. Thus,
optimal allocations essentially give them a free ride through the
SBIs, although the = 350 singlets contemplated under START do not
carry enough RVs to impact stability significantly.5 Their
inclusion has been studied,6 but they are ignored below. The
fraction of RVs penetrating the boost phase from Eq. (1) is exact
for both small and large K but is overestimated by 10%-20% for
intermediate K.’ Thus, the calculations below underestimate the
effectiveness of boost-phase defenses.

It is useful to write the number of penetrating RVs as R =
mMx, where x = e fK/M i the fraction of the heavy ICBM RVs that
penetrate boost. For 270 START-constrained heavy missiles, 2,000
SBIs give x ® exp(-0.13:2000/270) =~ 0.4. The general
relationship of x to K is shown by the top curve of Fig. 1.
According to Eg. (1) increasing the number of missiles or

replacing current missiles with faster ones would only rescale




the number of SBIs required. Thus, it is not necessary to vary
them to study boost-phase requirements and effectiveness.

The Soviet Union has about 20 submarines with a total of H =~
400 SLBMs with an average of n ® 6 RVs each. The fraction that
penetrate the SBIs can be written as approximately e'fK/¢H, where
the factor ¢ = 1/4 is included to incorporate clustering before
launch, without which few SLBMs would penetrate.8 For START-
constrained forces, fK/¢H = (fK/M) (4M/H) = (£K/M) (4-300/400) =
3(fK/M), so that e~ IK/¢H x3, as shown by the second curve on
Fig. 1. It shows that when ICBMs were suppressed by a factor of
0.4, SLBMs would be suppressed by a factor of ~ 0.05, i.e. about
an order of magnitude more.

Since nH = mM, when the SLBMs' contribution is added to that
of the ICBMs, the total number of RVs penetrating the defender's
SBIs is

R % mM(x + x3), (2)
so that the total number of penetrating RVs at x = 1 is about
twice that from ICBMs alone, but the SLBM contribution decays
rapidly. For that reason the SLBM RVs, and with them the
submarines' contribution to deterrence, can be safely ignored
above 1,000-2,000 SBIs. Phase 1 contemplates the deployment of
2-4 times that number. )

The variation of performance and indices with offense and
defense parameters is studied elsewhere;9 the purpose of this
note is to point out a few important relationships. Accordingly,
it is assumed below that the same offensive forces apply to both

sides and that both sides deploy identical defenses.

ITI. MIDCOURSE DEFENSES

Midcourse defenses can be preferential or non-preferential.
The latter would give essentially another factor of x attrition;
the former could be more effective. Midcourse interceptors are
assumed to act preferentially and to have long enough ranges to
cover the whole target set. Taking them to act adaptively would
improve performance slightly at low levels, but would not be



consistent with the sensors likely to be available in the near

and midterms.10

If R penetrating RVs attacked M targets, there should be =%
R/M RVs per target. Thus, R/M interceptors could defend any
given target, and I interceptors could defend I/(R/M) targets.
If there were D decoys per RV, there would be a total of (1+D)R
threatening objects, so that I interceptors could defend

S = I/[(1+D)R/M] = M[I/(1+D)R] = IefK/M/(14D)m (3)
targets, or a fraction T’ S/M = I/(1+D)R of them up to I =
(1+D)R, for which S = M. The choice of I' is somewhat judgmental.

For cost-effectiveness studies it is usually sufficient to
observe that S ® 300 surviving missiles out of M = 1,000
deployed, which would represent a robust deterrent, would
correspond to a fixed I = 0.3. That would determine the I needed
for any R. For example, R = 1,000 RVs, each with 10 credible
decoys, gives I = 0.3-11-1,000 = 3,300 interceptors. Their cost,
together with those of the SBIs, would determine the variable
defense costs, whose ratio to the RV costs would determine the
defense's cost effectiveness.

For crisis stability analyses, S and the restrike vary. S/M
scales on I/(1+D)R, so it is useful to absorb (1+D) into I to
make the midcourse interceptors "ideal," i.e. net of decoys,
which is done below. Since Eq. (3) only holds for I < R, it is
convenient to replace min(I/R,1) by 1-e"I/R,  The substitution is
not essential, but the error is modest.

The RVs penetrating the boost-phase defenses can be used on
ICBMs, aircraft, or value targets, i.e. projection forces. It
has, however, been shown that a targeting strategy that allocates
about a third of the penetrating RVs to each of the three induces
defenses that allocate their interceptors similarly. That joint
allocation is not overly sensitive to changes by either side.11

Figure 2 shows the portion of the first strike reaching the
defender's value. At the left border, from the bottom the curves
are for I = 2,000, 1,000, 500, and 10 midcourse interceptors.

The top curve is the total number of penetrating RVs from Eqg.
(2), about one third of which would be directed towards value.




Both sides have V =~ 2000 value targets of their own to protect
and a like number of the other's to hold at risk. The number of
RVs is less than 20%-30% of the strike on value above = 1,000
boost-phase defenders. The number of RVs striking value is not
large with defenses; it is taken to be a third of the difference
between the penetrating RVs and interceptors. Aircraft weapons
are added to determine the total strike on value, which falls to
about 1,400 weapons by 1,000 boost-phase defenders.

If each of the three target sets has about the same ratio of
interceptors to RVs, missiles and bombers have the same survival
function :

e =1-e /R o o~T/mMx _ ¢ _ exp (-1efX/M/mu) , (4)
which is shown in Fig. 3. For zero SBIs, € starts at I/R and
increases monotonically with I for each number of SBIs and with
SBIs for each I. Note that for I - 0, weak or no preferential
layers, € » 0 for all SBIs. Eq. (4) only holds for R > M, i.e.
more than enough penetrating weapons to cover all targets. For
first strikes that condition becomes R/3 = mMx/3 > M, or x > 3/m
% 0.3, which from Fig. 1 is often met.

Knowing € also makes it possible to evaluate the
effectiveness of the offensive missiles. The possibility of an
ICBM RV penetrating the boost-phase defenses is x; the
probability of its penetrating all the way to a missile is
roughly 1 - €. Thus, its overall probability of destroying a
target is = x(1 - €), which is shown in Fig. 4. The compound
probability falls strongly, but for I = 0 it is still
approximately 15% at 4,000 SBIs. The reduction is larger for
large I. For 2,000 SBIs and midcourse interceptors the
probability of destroying a target is about 7%; for 3,000 SBIs,
less than 1%.

The dependence of € on I is the core of the exchange. It is
also the basis for confusion about crisis stability models. ¢ is
sensitive to modest defenses. For a near-term I/mM = 1/3, START-
constrained offenses, and K ® 2,000 SBIs, € ® X = 0.4, both of
which are appreciable, so midcourse defenses are pivotal. To get
the most out of them, the defender combines I and K to maximize



IefK/M, thereby maximizing the survivability of his retaliatory
assets.

By Eqg. (3) this is the same combination of parameters that
is maximized in cost-effectiveness analyses.12 That means that
the combination of parameters that maximizes cost effectiveness
also maximizes\midcourse effectiveness and crisis stability,
which implies that maximizing cost effectiveness could
simultaneously maximize crisis stability.

If midcourse was non-preferential, Eq. (3) would not apply.
An RV's penetration probability would then be x. The number of
RVs targeted on each missile about mM/3M = 4. Thus, for x = 0.4
a missile's survival probability would be about (1—x)4 ~ 13%.
For ~ 20 airbases the number of RVs targeted on each might be =
20-50. If so, the survival probability of a non-alert aircraft
would be about (1-x)20 ~ 4-10"°, which is well below the =
€ -bases expected with preferential midcourse defenses.

Without a preferential layer the defender's ICBMs would be
drawn down strongly, SLBMs more strongly, and non-alert aircraft
eliminated altogether. All of the major components of his
retaliatory strike would be reduced without compensation, which
would degrade crisis stability. With preferentiality, at least
some missiles and aircraft would remain.

Aircraft arrive long after the RVs. All of their weapons
would be deposited on value, since there would be little else
left to strike. If the attacker had B aircraft-borne weapons
that struck from an alert rate a, and the rest of his aircraft
were destroyed, that would give aB weapons. Most should arrive
because they should be immune to missile defenses once in flight.
Ideally, the attacker would strive to make a - 1 to maximize his
first strike, but that could be detected. 1If so, the defender
could disperse his aircraft and increase his alert rate, which
could negate the benefit of striking first. Thus, the attacker's
alert rate could be little more than a nominal a = 30%.

Stability indices are sensitive to @, since the contribution
from aircraft is larger than that from RVs for moderate and

strong defenses. For that reason results are sensitive to




measures such as attacks by close-in SLBMs, particularly those on
depressed trajectories, which could greatly reduce the warning
time and hence effective alert rates.

IV. RESTRIKES

The defender's restrike can be calculated by reversing the
procedure. If before the attack he has the same number of
missiles and RVs as the attacker, the number he can launch is
reduced by the attacker's first strike to €-M missiles. The
fraction of them penetrating the attacker's boost phase defense
is shown in Fig. 5. The curves fall strongly for small numbers
of SBIs, and then hold up at a reduced number for large numbers.
Three factors contribute to the latter behavior. The first is €,
the probability of surviving the strike, discussed above.

The second is the restrike missiles penetrating the boost
phase defenses. SBI performance improves for smaller strikes, so
the restrike's penetration would be y = e~ TK/€M (e_fK/M)l/6 =
x1/€, y is small compared to x for ¢ small, but for large
defenses, € - 1 and y - x. Figure 6 shows restrike penetration
as a function of the number of SBIs and midcourse interceptors.
For I > 0 it has a long tail that leads to the similar behavior
of Fig. 5.

The third factor influencing the effectiveness of RV
restrikes is their probability of penetrating the attacker's
midcourse defense, which is essentially the fraction of the RVs
. in excess of the total number of attacker midcourse interceptors.
That is shown in Fig. 7. Only for I = 0 is there any significant
penetration for large numbers of SBIs. For 500 midcourse
interceptors, penetration falls to 0 at 1,500 SBIs. For 1,000 it
falls to 0 at 1,000; for 2,000 at 500 SBIs. For modest defenses
the RV restrike is small.

Those three factors are combined in Fig. 8, which shows the
overall probability of an ICBM RV penetrating to target. For I
small the probability is small because few survive the first
strike. For I = 500 the probability is non-zero out to about
1,500 SBIs, but never greater than about 7%. For I = 1,000 it



has a greater maximum, but only extends out to 1,000 SBIs. At
2,000 it reaches over 13% but does not extend beyond 500 SBIs.
Significant missile defenses protect some retaliatory missiles,
but not enough to retaliate decisively.

Thus, the bulk of the restrike must be carried by aircraft.
The defender's midcourse defenses should be able to defend his
air bases against threats that were attrited by modest boost-
phase defenses. All aircraft on alert are assumed to survive.
The fraction of those not on alert that survive because they are
defended should be about that given by Eqg. (4). Once airborne,
aircraft are assumed immune to missile defenses, although there
are some caveats.l3 The total number of aircraft weapons in the
restrike would thus be

W= [a + (1-a)e]B = BB, (5)
where the first term is the o = 30% of the aircraft normally on
alert and the second is the fraction not on alert that was
defended. The overall form of B as a function of K is shown in
Fig. 9. It resembles € of Fig. 3, although shifted up by a and
compressed by o/ (1-a).

The total second strike is the sum of the missile and
aircraft strikes, which is shown in Fig. 10. It is clear that
the dominant contribution below = 500 SBIs is the large number of
SLBM RVs from Fig. 5, but beyond that the dominant contribution
is the aircraft weapons from Fig. 9. The shift from RV to
aircraft retaliation occurs at quite modest numbers of SBIs. It
is interesting that for large K the restrikes converge to two
trajectories. The one for I = 0 falls throughout. Those for
large I converge to about 4,500 weapons because as more SBIs are
added, eventually all of the aircraft are protected and can
restrike. Adding midcourse interceptors simply makes it possible

to approach that condition with fewer SBIs.

V. COSTS
The costs for the first striker are those for imperfect
limiting of damage to his value and for his imperfect strike on

the other's value.l?® The two costs can be expressed in terms of




the first, R,, and second, R,, strikes on value discussed above.
The total costs for the two sides are weighted averages of them.
For exponential damage functions, the costs for striking first

and second arel®
c; =1- e-RZ/V + Le'Rl/V and (6)
Cy =1 -eR/Vy e RV, (7)

where V is the number of targets held at risk. L is the relative
weighting of value strikes and damage limiting. L = 0.3 is used
below; the results are not sensitive to the precise value.

Figure 11 shows the costs of first strikes for the R, from
Fig. 2 and the R, from Fig. 10. They start at = 0.95 for no SBIs
and broaden out to 0.7-1. Once again, however, the curves
converge to two trajectories. That for I = 0 falls to = 0.7; the
rest converge to % 1.1. Apart from a dip at = 1,000 SBIs, for
all large I the costs to the attacker for striking first increase
to levels greater than those in the absence of defenses.

Figure 12 shows the costs of second strikes. They start at
about 0.8 and then all fall. The cost for I % 0 falls to = 0.7;
the rest approach = 0.5. The costs for waiting rather than
striking first fall monotonically with increasing defenses.

These two costs can be combined into a stability index.
While a heuristic derivation is possible, here it is simply
observed that increasing the cost for striking first or
decreasing the cost for striking second appear to be stabilizing,
so that an useful index of stability is C,/C5. Figure 13 shows
Cys Cy, and C,/C, as functions of the number of SBIs for a mid-
term I = 1,000. The trends in the costs have been noted above:
their ratio leads to the index of the top curve. It is
relatively flat to = 1,000 SBIs. Then it climbs, asymptoting to
about 2, which is set by the penetration of restrike aircraft.

Figure 14 shows the indices for several values of I. Again,
that for small I falls monotonically, indicating that pure boost-
phase defenses would be destabilizing in this metric. Those for
large I increase, apart from a small dip at small defenses,
converging to about 2. The index is a monotonically increasing

function of I for every number of SBIs. The increase is small



for few SBIs, which indicates that midcourse defenses of these
sizes would not by themselves increase stability significantly.
For 1,000 or more SBIs the increase with I is strong, which

indicates that defenses with comparable numbers of boost-phase

and midcourse defenses could be stabilizing.

VI. PROTECTION OF FIRST-STRIKE AIRCRAFT

The indices of Figs. 13 and 14 rise to above unity because
for large defenses the first and second strikes, largely from
aircraft, tend to aB and B weapons, respectively. The model
above assumes that the attacker strikes from some alert rate q,
so that 1 - a of his aircraft are lost, but the defender can
asymptotically defend all of his aircraft and deliver a larger
strike in retaliation. Under some conditions that assumption is
appropriate, e.g. if the defender used close-in SLBMs to underfly
missile defenses and destroy all non-alert aircraft immediately
after the first attack.

It is, however, useful to study the completely symmetric
case in which the attacker can also defend his aircraft. Then if
the defender did not retaliate against those aircraft, all would
survive to deliver their full inventory. If, however, he
diverted all of his penetrating RVs to them, he would be unable
to destroy any value. Intermediate allocations seem appropriate.

Fig. 15 shows the survivability of the attacker's non-alert
aircraft under the assumption that half of the restriking RVs are
allocated to the aircraft and the rest to value. 1In contrast to
Fig. 3, except for small I the attack aircraft survivability
function increases rapidly with K and I to = unity, reflecting in
part Fig. 8's result that except at K ® 0 there are few
restriking RVs left to allocate to aircraft suppression.

Overall, most attack aircraft survive.

Figure 16 shows the resulting first strikes. The curve for
I ~ 0 drops down to =~ 2,000, but the rest remain about constant
at about 4,500. The top curve is the number of attacking RVs
penetrating boost, which is dominant for few SBIs, but falls away

quickly. The differences from Fig. 2 are due to the greater
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number of aircraft in the attack. All of the additional weapons
are delivered late and on value. Thus, the restrike is not
impacted, other than by the need to partition RVs between value
and aircraft.

Figure 17 shows C;. While superficially different from Fig.
11, its underlying structure is essentially the same. The three
curves for I > 0 again converge. The limit is lower than in Fig.
11, but still higher than that for first strikes in the absence
of defenses.

Figure 18 shows C,, which does differ in essential ways from
Fig. 12. The curve for I small has shifted from the top to the
bottom, reflecting the defense's preference for the attacker's
non-alert aircraft to be undefended. The other three curves
again converge, but to a value only slightly lower than that
without defenses. The curve for 2,000 SBIs falls monotonically,
but only % 5%. Thét for 1,000 increases a few percent before
falling. The curve for I = 500 increases about 7% by 1,000 SBIs
and then falls. None of the increases appear significant.

As noted above, Figs. 15-18 were calculated under the
assumption that half of the restriking RVs were allocated to
aircraft and half to value. Figure 19 shows the effect of
varying that allocation at 1000 SBIs, where there are still some
RVs to allocate. The top curve is C,i the bottom C,. Both fall
as more restrike RVs are allocated to aircraft. Neither change
is large, essentially because there are too few RVs to greatly
impact aircraft contributions. The defender would like to
minimize C, by favoring aircraft in his allocation. That would,
however, decrease C, more. Their ratio is not, however, greatly
different across the range. Thus, the earlier figures should not
be sensitive to this allocation.

Figure 20 shows the stability indices. The variations are
essentially the inverses of those in Fig. 18. The index for I =
0 falls throughout; that for 2,000 increases throughout. Those
for intermediate values first fall slightly and then rise and
converge to unity. For 0 SBIs the index for I = 0 is about 0.92,
as before.. Then for K = Oﬂthe index falls monotonically with
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increasing I, which indicates that midcourse defenses alone would
reduce stability under the stability metric used. By 1,000 SBIs
and 2,000 midcourse interceptors, 2,000 SBIs and 1,000 midcourse
interceptors, or 3,000 SBIs and 500 midcourse interceptors,
however, the indices would have returned to about the no-defense
level. They would then continue to climb above it as more SBIs
or midcourse interceptors were added.

A trajectory that followed the curve for I = 0 out to K =
3,000 and then added 500 midcourse interceptors would appear to
have the smallest transient degradation. Thus, the overall
interpretation is much the same as that of Fig. 14. With or
without defense of non-alert aircraft, modest defenses increase
stability indices. Without their defense, however, it would
appear best to deploy midcourse interceptors first. With their
defense it would appear best to deploy some number of SBIs first.

VII. ASYMPTOTIC CRISIS STABILITY INDICES

It is useful and plausible that the stability indices in
Figs. 14 rise for large K and that those in Fig. 20 approach
unity there. It is possible to see why they approach that
asymptote. The investigation also sheds some light on the
behavior of crisis stability in the long term. The discussion
treats ICBM and aircraft strikes; SLBM penetration is higher

order in x, so it can be ignored for large defenses.

A. Preferential Two-Layer Defenses

The non-preferential layer is assumed to be followed by I
ideal preferential interceptors. For large K few RVs penetrate.
It is assumed that all B first strike aircraft weapons penetrate,
so the first strike is = B weapons. The survival probability of
targets defended by both layers is from Eq. (4) € = = 1 - e I/R,
The number of second-strike RVs is higher order in x and can be
neglected. The number of aircraft restrike weapons is from Eq.
(5) W= [a + (1-a)e]B = BB. For x small, the cost of striking
first is

c; =1 - e kBB , 1e7kB = 1 - B 4 Lz, (8)

12




-kB

where 2z e , and k is determined by the number of targets held

at risk. The cost of restrike is then

c, =1 -z + LA, (9)
Their difference is
§Cg=cCp - Cy = (1+1L)(z-2P). (10)

Because 0 < z < 1 and 0 < 8 < 1, then z < 2P, ¢; - ¢, < 0, and
C,/Cy < 1. Thus, defenses reduce crisis stability indices to
some extent. However, for € - 1, i.e. good defenses, 8 - 1, so
zP - z, ¢4 - C, » 0, and C4/C, »+ 1, which is crisis stable. For
B+ 1 Cy/Cy 1.

B. Non-Preferential Defenses
If T - 0, the only remaining defenses are the K SBIs, which
are non-preferential. Then by Eq. (4) € = 0, B - «,

c; =1 -2%+ Lz, and (11)

c, =1 -z + Lz%. (12)
The difference between the the strike costs is then

§Cy = Cp = Cy = (1 + L)(z - 29%). (13)

For ¢ - 0, z - z%

= constant < 0, so ¢, - C, <0, and C/C,y < 1,
which indicates loss of stability.

The difference between Egs. (13) and (10) is

§Cy - 8Cp = (1 + L) (zP - z9). (14)
Since zP - 2% < 0, the difference between first and second strike
costs is always more negative for I = 0. For large defenses 8 -
l. For example, for START's B = 4,500 and V = 2,000 targets

§Cq = 6Cg » 1.3-(0.1 - 0.19-3) = -o0.52, (15)
so the difference can be large as seen in Figs. 14 and 20.

The presence or absence of a preferential layer has a much
larger effect than the imperfect defense of restrike aircraft.
The stability metric enters only through the monotonicity of the
damage functions and C; and C, and the multiplier 1 + L. Large
variations in the weights given to damage limiting and damage
would not alter the conclusions. ’

The discussion above concerns the limit of the transition
from deterrence with missiles to deterrence with aircraft. 1If,

after the latter was achieved, the missiles were eliminated, then
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according to Eq. (10) for B -+ 1 the aircraft could also be
reduced without loss of stability, because

§Cg = (1 + L)(z - 2Py > (1 +1)(z - 2) 0 (16)
for any z or B. The drop in their stability indices would be
slight even for an order of magnitude decrease in the number of
aircraft. Thus, the protection of aircraft and elimination of
missiles followed by the elimination of the aircraft, too, would

not appear to have any adverse asymptotic stability issues.

VITII. SUMMARY AND CONCLUSIONS

This note has derived a simple, approximate model for crisis
stability that appears to contain most of the features needed to
understand the variation of stability indices with defenses.
ICBMs are attenuated exponentially; SLBMs more strongly; singlets
are not attenuated but do not matter at START levels. For
modest, symmetrical defenses, most of the first and second
strikes are carried by aircraft. If attack aircraft cannot be
defended, restrikes can be larger than first strikes, and
stability indices can be larger than one. If they can be
defended, first strikes can be as large as restrikes, and
stability indices tend toward unity.

Under either assumption, first and second strikes are
dominated by SLBMs in the absence of defenses, but they
transition over to aircraft at modest levels of defense.
Significant defenses protect some retaliatory missiles, but not
enough to retaliate strongly. That makes detailed discussions of
factors that might reduce aircraft pre-launch survivability
interesting. This note does not address the ultimate goals of
strategic defenses; only the transition from deterrence with
missiles to deterrence with aircraft. It indicates, however,
that in the latter, missiles would be vestigial and could be
eliminated without penalty, and aircraft could be significantly
reduced without loss of stability.

The combination of parameters that maximizes cost

effectiveness also maximizes midcourse effectiveness and crisis

14




stability, which implies that maximizing cost effectiveness could

simultaneously maximize crisis stability.
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Survival probabliity
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Fig. 9. Restrike
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Strike costs
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Fig. 11. Cost of first strike
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Costs & Index

Stabllity Index

Fig. 13. Costs and stability index
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Strike costs

Restrike costs

Fig. 17.First strike costs
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Strike costs
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